The Use of Monitoring and Modeling to Optimize Remedial Systems and Reduce Site Uncertainties at the Massachusetts Military Reservation (MMR)

Ken Black Michael J. Goydas

<u>Ken.black@jacobs.com</u> Mike.goydas@jacobs.com

Introduction

Jacobs has designed, constructed, operated, and analyzed the performance of seven groundwater remediation systems at the Massachusetts Military Reservation (MMR) over the past 6 years.

Four new remediation systems are currently being designed and will be operational by mid 2005.

This presentation will use data from the CS-10 plume to show how groundwater hydraulic and chemical monitoring and flow and transport modeling is used to:

- Optimize the pump and treat systems, monitoring networks, and the treatment systems
- Reduce uncertainties in hydraulic conductivities and concentration distributions present in large plumes
- Maximize contaminant mass removal by using observed data and making strategic changes to the operational conditions of the remedial systems

Overview

- Remedial Process Optimization (RPO) Overview and Approach
- MMR Model Overview
- CS-10 Optimization Example
- Monitoring Network Optimization Example

Remedial Process Optimization Sequence

Optimization Definitions

At MMR, three forms of optimization are routinely addressed. These include:

- 1. Pump and Treat System Optimization
 - Adjustments can be made to extraction and injection flow rates and screened intervals to improve mass removal
- 2. Monitoring System Optimization
 - Reduction in the number of monitoring wells and the sampling frequency used to monitor remedial system performance and to delineate plumes
- 3. Treatment System Optimization
 - Changes can be made to the water treatment systems to reduce cost and eliminate problems that emerge over time

Results of the Optimization Studies

- The optimization studies identify ways to improve the operational efficiency of these systems and to reduce ongoing O&M costs.
- The results provide the technical justification needed to convince regulators that changes to the remedial system will help get the site to closure sooner.

MMR Groundwater Modeling

- A regional model of Western Cape Cod has been formulated and updated over time based on observed lithologic, hydraulic and chemical data
- The regional model is the basis for several site-specific (zoom) models that are used to quantify remedial system performance
- The flow and transport models are all solved using MODFLOW-SURFACT and are post-processed with Jacobs codes and commercial software
- Model sizes range up to 4 million cells

MMR Model Domains

Regional model shown in heavy black dashed line along the coast, zoom models in grey

CS-10 Model Domain

- 3,152,880 finite-difference cells
- 24 layers
- 50 by 50 foot minimum grid spacing
- 100 by 100 ft grid maximum grid spacing

CS-10 Area

- Plume in yellow
- Extraction (red)
- Injection (blue)
- 4 miles long
- 1 mile wide (max)

Sandwich Road Extraction and Injection Wells and Current Flow Rates (gpm)

In-Plume Extraction Wells, Infiltration Trenches and Current Flow Rates (gpm)

Examples of Optimizations Already Conducted at MMR

- Three rounds of pump and treat optimizations for the CS-10 plume:
 - Design optimization
 - Sandwich Road optimization
 - In-Plume optimization
- Monitoring system optimization for FS-12
- One treatment system optimization briefly mentioned in this presentation

Results CS-10 Design Optimization

50% reduction in total pumping requirement

- 60% reduction in number of extraction wells
- Improved mass removal

60 Percent Design

CS-10 Optimization Examples

Overview

- Three remedial systems employed – a cutoff fence and In-Plume removal
- Extraction wells and injection wells and infiltration trenches used
- Total extraction over 3500 gpm (5 mgd)

Sandwich Road

Conceptual Model Observations

Legend • Monitoring Weil Note: Results are baseline samples (4/99-5/99) unless off-erwise noted • Extraction Weil • Moltoring Weil Screen ID (10) 5 (TOC) PCE Monitoring Weil samples concentrations in upd. ND = Nondetect ND = Nondetect score • Extraction Weil • Sampled 5/99 • Water Table • Sampled Concentration on thorup upl. (TCE) PCE MCL exceedence) • ND = Nondetect ND = Nondetect (TCE) PCE MCL exceedence) • ND = Nondetect ND = Nondetect (TCE) PCE MCL exceedence) • ND = Nondetect ND = Nondetect (TCE) PCE MCL exceedence) • Reinjection Weil • Sampled 3/99 Bedrock • Hortz, Sore

Deep Hydraulic Response

at CS-10

husetts Military R

402 SD CS10_An_Sp_2000-50-a.dwg Figure 4-8

Shallow Hydraulic Response

K-field revision needed at depth —

Transient Model Comparisons To Evaluate Accuracy of Model

• The remedial system is shut-down and restarted to evaluate drawdown and mounding

• Data loggers used to capture transient hydraulic responses

 Model comparisons used to evaluate and update the 3D K-field distributions

Sandwich Road Optimization

Pack the screened intervals, modify deep hydraulic conductivities and modify flow rates to improve mass removal

Sandwich Road Optimization Results

TCE Concentration vs. Time TCE Concentration vs. Time Sandwich Road Plant Influent Extraction Well 03EW2174 120 100 100 80 Concentration (µg Concentration (µg/L) 60 40 20 Original design conditions Original design conditions Packed off upper 64 feet ost-optimized conditions 10 0 1/1/1998 1/1/1999 1/1/2002 1/1/2004 1/1/1998 1/1/1999 1/1/2000 1/1/2001 1/1/2002 1/1/2003 1/1/2000 1/1/2001 1/1/2003

> More efficient mass removal More robust capture zones

 Greater carbon utilization More effective monitoring

1/1/2004

More Effective and Efficient Operations !

Sandwich Road Mass Recovery

Sandwich Road System Cumulative Mass Recovery 1999/2002 predications and actual data

In-Plume Optimization Pack the screened intervals and modify flow rates to improve mass removal

In-Plume Mass Recovery

Inplume System Cumulative Mass Recovery 1999 and 2002 model predications and actual data

Date

In-Plume Wells

Comparison of Mass Removals From Extraction Wells

Sandwich Road Wells

Goal of Monitoring Optimization

- Maximize the amount of relevant information while minimizing cost
- Relevant information addresses temporal and spatial objectives of monitoring

Monitoring Network Refinement/Optimization

Intuitive Refinement

- Trend analysis
- Spatial and temporal redundancy/weaknesses
- Field and modeled flow analysis
- Focus on weak links in design (based on design sensitivity testing) and key components of system
- Design Plume Shell Kriging Tools
 - Spatial thinning
 - Identify weaknesses in network (error or uncertainty mapping)
 - Support of annual remapping of plumes
- Statistical Analysis of Data Sets/Monitoring Network
 - 2D and 3D assessment of network appropriateness
 - Well-by-well basis
 - Groups of wells based on monitoring objectives

Geostatistical Optimization

Spatial Redundancy

- Variogram modeling to estimate spatial correlation between wells
- Indicator kriging to estimate typical contribution from each well to plume mapping results

Temporal Redundancy

- Temporal variogram to estimate average correlation between sampling events
- Iterative "thinning" of individual wells to adjust well-specific sampling frequencies

TCE Concentrations in Recirculating Wells 28RW1101 and 28RW1102

Results of Optimizing FS-12 Monitoring Network

FS-12 Monitoring Network

Optimized Monitoring Network

LTM Optimization Results for FS-12

Spatial winnowing eliminated 49 of 135 locations, a savings of 36%

• Temporal thinning indicates that annual rather than quarterly sampling is sufficient to detect long-term trends

• Overall, these optimizations produce an 84% reduction in sampling costs

Optimization through mid-2002 has lead to the following changes at MMR

- Shut down of 16 extraction wells in three plumes
- Shut down of 1 remedial system (recirculating well)
- Modified flow rates for 6 remedial systems
- Extraction screens packered to:
 - increase mass removal and efficiency and increase capture zone width
- Monitoring program reductions (locations, frequencies, analytes) resulting in \$3.5 million in cost avoidance
- Data gaps and operating uncertainties reduced

• Treatment optimization improved carbon lifetime at FS-12 from 40 to 170 days, saving over 115K per year

Summary

- Groundwater modeling is used at MMR to help manage the operations of all remedial systems and to design future systems
- Periodic optimizations are completed to shorten the operational lifetime of the remedial systems
- The optimizations and continuing site characterizations are leading to more efficient systems and less uncertainty

The End