
The Finer Things In Alteryx

Ken Black 7/2/18

Controlling Level Of Detail by Parsing Dates

The_Century - tostring(tonumber((left(DateTimeFormat([Event_Date],'%Y'),2))) + 1) + "st"

The_Decade - left(DateTimeFormat([Event_Date],'%Y'),3) + "0's"

Converting Unix Timestamps (check your work at https://www.unixtimestamp.com/index.php)

https://www.unixtimestamp.com/index.php

Topic 4: Regex and Date Operations (Multiple weekly examples)

From Week 4 of the Weekly challenges

.*(\d\d-[[:alpha:]][[:alpha:]][[:alpha:]]-\d+).* | .*(\u\l\l\s\d+,*\s\d\d+).* | .*(\d+-\u\l\l+-\d\d+).* | .*(\d-

[[:alpha:]][[:alpha:]][[:alpha:]]-\d+).*

There are four regex searches here -> and the example data that matches the search:

1. .*(\d\d-[[:alpha:]][[:alpha:]][[:alpha:]]-\d+).* -> 16-APR-2005

2. .*(\u\l\l\s\d+,*\s\d\d+).* -> Nov 16, 1900

3. .*(\d+-\u\l\l+-\d\d+).* -> 9-July-2001

4. .*(\d-[[:alpha:]][[:alpha:]][[:alpha:]]-\d+).* -> 4-SEP-00

Notice that the pipe (|) is used to delimit the searches and that “.*” is used at the beginning and the

end of the searches to be able to find the 4 search patterns anywhere in the search area.

Alteryx creates 4 output fields sized at 220 to handle the content of the four searches, when the Parse

method is used.

Example matches of these are:

After some additional work using a formula tool,

And a text to columns parse:

&Y

the final dates are assembled using the DateTimeParse function:

For Reference, here are the specifiers used for dates/time for Alteryx:

The separators:

And the Date/Time Examples:

To find a match for anything:

(.?)*

Datetime Tool Example 1: Custom format date string

From Week 16, a custom formatted string (16-JUN-01) is converted to a date (2001-06-16) using the

datetime tool.

The custom setting is shown below as d/-Mon.-yy .When this is used, Field 3 becomes a DateTime Out.

Datetime Tool Example 2: Standard format date string

From Week 17, a standard formatted string (April 03, 2013) is converted to a date (2013-04-03) using

the datetime tool.

Week 21 – More Custom Date Work

In this example, very sketchy date details are provided and complete month/years are created from the

information. Here is the initial sketchy data followed by the parsing of month and year.

Here is the final date output, showing the clever logic used to rename the months:

Topic 5: Multifield searching and matching (Week 5)

The append tool is used to create combinations of an input value and records in a database such that

the input field can be found in any of the columns of the database. The append operation creates the

combinations needed for this to be possible, and a simple if block does the comparisons.

The user input of 3333 is appended to the database records. The following logic identifies the records

where 3333 is found.

Topic 6: Length along a Polyline (Week 6)

A sequence of airport trips are strung together to find out which sales rep as traveled the most miles.

The airport lat/longs are given as centroids so all that is necessary is to produce polylines for each sales

rep and use the spatial info tool to calculate the distance traveled by each sales rep.

Topic 7: Parsing JSON Data (Week 7)

This is an excellent example in so many ways. The methods used to identify the JSON data elements are

insightful and efficient. There are so many excellent maneuvers in this example that it is one of the best

exercises to date. I have rarely used the sample tool, and it is used in two different ways here. I have

never used the JSON tool, so it was good to learn. Finally, the use of regex and the dynamic rename tool

were both good.

Topic 8: Filtering by date (week 8)

Given date data like:

Configure a filter to allow date-based filtering

Topic 9: Ranking items where there can be more than 1 at the same rank level, and performing a top N

calculation (Week 9)

I like this example because of the use of the sample tool to identify the top N ranks, and also for the use

of the clever technique used to assign the ranks (using a join).

Topic 10: Calculating Time (Days, hours, minutes, seconds)

Has an error in the naming of the first formula. This says it is a time difference in minutes but is actually

a difference in seconds. Otherwise, excellent instructional on how to calculate discrete time blocks.

For a more efficient solution, see the following formulas

Creating a day bucket from a datetime field

/* Create the day for counting records */

DateTimeFormat([DURATION_START_TIMSTM],'%Y-%m-%d')

Creating an hour bucket

DateTimeFormat([DURATION_START_TIMSTM],'%H:00:00')

The Minute Bucket With the day:

DateTimeFormat([DURATION_START_TIMSTM],'%Y-%m-%d %H:%M:00')

The Minute Bucket:

DateTimeFormat([CALL_START_DT],'%H:%M:00')

You can also create an hourly bucket for all days of your data like this:

DateTimeFormat([DURATION_START_TIMSTM],'%Y-%m-%d %H:00:00')

With this formulation, you will get 24 records per day times the number of days you have in the file.

Topic 11: Linear Regression Modeling

I like this example because it uses the Spearman Correlation tool to identify the top 10 statistics that are

most strongly correlated to winning baseball games (lower part of workflow) than then these terms are

used in a linear regression model to estimate how teams will do in the following season. I especially like

the use of the scoring tool to determine the teams which are best positioned to win the following year.

It would be an interesting study to take historical data, apply this approach and see how accurate the

results were. I’d like to do the same thing for football.

Topic 12: Identifying Data Fields in Sloppy Data

This is example 20 and I like it a lot because of how regex parsing is used to identify different data type

elements like addresses, phone numbers, etc. The buckets are created to hold these fields and I think

the approach is novel and robust. There are many real-work examples that could use this approach.

The incoming data looks like this:

Once the cleaning and parsing is complete, a nice output structure is achieved:

Here are the details of how the data fields are identified: (Awesome regex examples)

Continuing with the theme of sloppy data, Week 22 has ATM data in a really ugly format and the dollar

transactions need to be extracted. This is another nice regex example. Here is the workflow:

Here is the regex for extracting the dollar values of the transactions:

Here is the result:

Topic 13: Time Series Forecasting Using An autoregressive integrated moving average (ARIMA) model

I really like this example for a few different reasons. Using Alteryx to make predictions is a very practical

usage of the software. I especially like the forecasting at 95% and 80% high and low.

Miscellaneous Notes

Flat files are intended to be used with ASCII characters.

Quick Reference For All Tools

https://help.alteryx.com/10.6/Getting_Started/AllTools.htm

https://help.alteryx.com/10.6/Getting_Started/AllTools.htm

Browse Colors

Browse Metadata

Data Types

Boost Regex

http://www.boost.org/doc/libs/1_62_0/libs/regex/doc/html/boost_regex/format/boost_format_syntax.html

Alteryx Keyboard Shortcuts

file:///D:/Program%20Files/Alteryx/bin/RuntimeData/HtmlAssets/help.alteryx.com/AlteryxCurrent/en/index.htm#HotKeys_Shortcuts.htm?Highlight=keyboard shortcuts

